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There has been much interest in developing receptors and
catalysts that interact with phosphates because of the many
important roles that they play in life (e.g., ATP, c-AMP, c-GMP,
DNA, phosphatidyl choline, etc). Some of these receptors and
catalysts have been used for sensing cleaving phosphatés.
Organic receptofs' have been shown to bind phosphates by
H-bonding. Such H-bonding interactions can be used to activate
and hydrolyze phosphate esters. Phosphate esters can also be
activated by direct coordination to metal ions. Numerous nfono-
and dinucledr metal complexes have been developed as models
for nucleases,polymerase$,and phosphatasé@slo sense phos-
phates efficiently, the receptor should bind tightly to the phosphates.
However, it is generally difficult to achieve tight binding of
phosphates in watéf.One way to overcome this difficulty may 2)
be to combine H-bonding and metal coordination. Here we compare
the binding of dimethyl phosphate fband2 to give 1a and 2a,

respectively (Scheme 1). b)
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Figure 1. Crystal structure (ORTEP representation)laf
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Figure 2. H NMR of (a) complexd, (b) complexla, and (c) complexes
1 andla and dimethyl phosphate at equilibrium.

group. The N-H---O distance is 2.77 A with the NH distance of
0.89 A and H--O hydrogen bond distance of 1.96 A. As shown
Complexesl and 2 were generated in water as their hydroxy below, this H-bond stabilizes the bound phosphate. It may also
forms (coordinated hydroxide instead of coordinated water) by orient the coordinated phosphate and restrict the rotation of the
adding 1 equiv each of sodium hydroxide and sodium picolinate Co—O bond.
or sodium 2-aminopicolinatéto [(bamp)CoCj]*? (100 mM) and Co(lll) complexes are ideal for studying the reversible binding
heating the mixture at 5TC for 5 h. Picolinate or 2-aminopicolinate  of phosphates because the rate of equilibration is slow on the NMR
chelates regiospecifically to [(bamp)CgBkhen 1 equiv of sodium time scale. Thus, the equilibrium constant can be obtained by
hydroxide is added. The bound carboxylate anion of picolinate comparing the intensities of the NMR signals due to the bound
prefers to be trans to the bound hydroxide anion due presumablyand the free species. Two of thd NMR signals forl (Figure 2a)
to charge repulsiot® Complexesl and2 were formed by adding are clearly differentiated from those bé (Figure 2b). ThéH NMR
1 equiv of HCIQ to the corresponding hydroxy complexes. signals for free dimethyl phosphaté 8.46) and the coordinated
Complexlawas synthesized by adding sodium dimethyl phosphate dimethyl phosphated(3.22) in 1a are also distinct (Figure 2c).
(50 mM) to1 (10 mM) and heating the mixture at 8C for 3 h. Heating a solution ofl and dimethyl phosphate (10 mM each) at
Figure 1 shows the crystal structure Bd** As anticipated, the 80 °C for 3 h gave equilibrium levels of, 1a and dimethyl
anionic phosphate diester is coordinated trans to the carboxlatephosphate (Figure 2c3*P NMR (not shown) of the same mixture
anion. Furthermore, the bound phosphate is H-bonded to the aminoshows a singlet for the free phosphate and a second singlet at 5.6

ppm (relative to free phosphate) for the bound phosphate.

:E%i\(\llg:)sr?tycggrizprgﬂ?gnce should be addressed. E-mail: jchin@chem.utoronto.ca. In contrast to the above result®a does not form in any
* Pohang University of Science and Technology. appreciable levels when dimethyl phosphate is adde?l wader
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Table 1. Equilibrium Constants (K x 10~1, M~1) for Binding of

to elucidate the cooperativity between metal coordination and
Halides to 1 and 2 in Water at 80 °C

H-bonding in enzymic systems. In our systems, cooperativity

anions 1 2 between H-bonding and metal coordination appears to be consider-
E 25.0 23 able not only for binding phosphates as shown in this work but
Cl 2.5 1.6 also for hydrolyzing them as we showed previoi&lifhus, this
Br 0.7 1.1

type of cooperativity may be important for recognition of ground
state molecules as well as for stabilization of transition states of

the same conditions used to produce Figure 2c. Greater concentra-reacnons' It has recently been shown that cooperativity between

tions of dimethyl phosphate (100 mM) can be used to detect the H-bono!ing and metal coordination also plays an important role in
formation of2a. The equilibrium constants for binding of dimethyl recognition of nucleobasés.

phosphate td and?2 are 210 and 6.2 M, respectively, at 80C. Acknowledgment. We thank the Natural Sciences and Engi-
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resonance stabilization of the amino group).linthe charge on
both the hydrogen bond donor and the hydrogen bond acceptor isReferences

partially positive. It has been shown that the hydrogen bond is (1) Buehimann, P.; Pretsch, E.; Bakker@hem. Re. 1998 98, 1593-1687.
strongest when the donor is positively charged and the acceptor is (2)

negatively chargeéb

Interesting organic receptors that bind phosphates by H-bonding

in nonagueous solvents have been repdttddowever, it is difficult

to achieve tight binding of phosphates in water by H-bonds alone.
Monodentate coordination of phosphate diesters to metal ions in

water are also generally weak (< 10! M~1).16 The binding
constant can be increased to about 400 Idy coordinating both
phosphoryl oxygens of the diester to dinuclear metal compl&xes.

It has been shown that there is considerable cooperativity between

metal ions in dinuclear metal complexes not only for binding
phosphate esters but also for hydrolyzing thénit would be
interesting to investigate the cooperativity effect of dinuclear metal

complexes and H-bonding for phosphate recognition and hydrolysis.

Potentiometric titration reveals that the bound water molecule
in 1 (pK, = 3.3) is considerably more acidic than thaifpK, =

5.4). Thus, Lewis acidity of the metal complex can be increased

considerably by the H-bonding. This also indicates that the
equilibrium constant for hydroxide binding fiois about 100 times
greater than that for binding of hydroxide o Here again, the

stronger hydrogen bond (by about 3 kcal/mol) between the slightly

positive H-bond donor and the anionic H-bond accéptappears

to be the reason for the tighter binding of hydroxideltoWe
investigated the binding of F, Cl, and Br tband 2 by NMR
methods. The equilibrium constants are shown in Tablg As
expected, F binds more tightly tbthan to2. However, Br binds
more tightly to2 than tol. Thus,1 is much more selective théh

for binding F over Br. We propose that the stronger binding of F
to 1 than to2 is due to the cooperativity between H-bonding and
metal coordination. The slightly weaker binding of Bris¢han to

2 is likely due to the unfavorable steric interactions between the
coordinated bromide and the amino group. In addition, F is
intrinsically a better H-bond acceptor than Br.

There is much current interest in metal coordinated anions that

are H-bonded® However, the functional role of such systems is

not yet clear. Metal coordinated hydrides that are H-bonded
intramolecularly may be highly reactive for reducing ketones and
imines?! Active sites of some metalloenzymes also contain
coordinated anionic ligands that are H-bondebut it is difficult
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